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Abstract: Through the underlying SU(2) group structure of structured-Gaussian beams, a reduced 
spherical phase space can be defined, in which a beam is represented by a collection of points known 
as the Majorana constellation. This stands as the proper generalization of the modal Poincaré sphere 
to higher orders. Moreover, an invariance to an astigmatic transformation is translated into a 
rotational symmetry of the constellation and gives way to continuous or quantized geometric phases. 

Structured-Gaussian (SG) beams are solutions to the paraxial wave equation for which the intensity profile remains 
invariant (up to a scaling factor) upon propagation. Among these are the well-known Hermite-Gauss (HG) and 
Laguerre Gauss (LG) beams which have been the subject of extensive research. Other known examples are the 
generalized Hermite-Laguerre (HLG) beams obtained via astigmatic transformations from HG or LG modes [1]. The 
HG, LG and HLG modes connected through astigmatic transformations are customarily represented as points on the 
surface of the modal Poincaré sphere (MPS) [2,3]. However, this representation is restricted to HLG beams and 
different spheres are needed to differentiate between the modes. 

 
Using the operator formalism, SG beams can be shown to be analogous to quantum angular momentum through 

Schwinger’s oscillator model [4,5]. The total order N and the azimuthal index l of LG modes play the role of quantum 
numbers and SG beams are obtained by restricting the space to modes with same N. Given this mathematical similarity, 
spin-coherent states, corresponding to extremal (l=N) HLG modes, can be used to define a Q function on the surface 
of a sphere. The zeros of this phase-space representation define the Majorana constellation [5,6], a set of N points that 
uniquely define an SG beam. Figure 1 shows an icosahedron beam as an example. Therefore, the Majorana 
representation stands as the proper generalization of the MPS to higher order modes. 

 

 
Figure 1. Icosahedron beam.	(From left to right) Intensity distribution with the phase coded as a hue, Majorana constellation and Q function.  

The constellation also provides information about its angular momentum content and invariances to specific 
astigmatic transformations through its rotational symmetries. The rotational symmetries give way to (continuous or 
quantized) geometric phases which can be determined solely from the constellation. This allows the design of highly 
symmetric beams, such as those given by platonic solids (see Fig. 1) and with specific quantized geometric phases 
[5]. Furthermore, the (continuous or discrete) geometric and Gouy phases can be measured by a non-interferometric 
method [7,8].  
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